Supporting Information

for

Synthesis of Tetrahydrofurans by a Tandem Hydrogen Atom Abstraction/Radical Nucleophilic Displacement Sequence

David Crich, * Xianhai Huang, and Martin Newcomb*

Preparation of Radical Precursors

2. TBDPSCl (1.75 ml, 6.67 mmol) in CH₂Cl₂ (5.0 mL) was added to a solution of **1**¹ (1.08 g, 6.07 mmol), DMAP (0.06 g, 0.486 mmol) and NEt₃ (0.97 mL, 6.98 mmol) in CH₂Cl₂ (15 mL) at room temperature and the resulting reaction mixture was stirred overnight at room temperature before CH₂Cl₂ (50 mL) was added. The CH₂Cl₂ layer was washed with saturated NH₄Cl solution (40 mL), water (20 mL) and brine (20 mL), then

dried (Na₂SO₄) and concentrated to dryness. Column chromatography on silica gel (Hexane/EtOAc 10:1) gave **2** (2.02 g, 80%) as an oil. ¹H NMR δ 7.94 (d, 2 H), 7.68 (dd, 4 H), 7.47-7.37 (m, 9 H), 3.72 (t, J = 6.2 Hz, 2 H), 2.96 (t, J = 7.5 Hz, 2 H), 1.86 (m, 2 H), 1.66 (m, 2 h), 1.06 (s, 9 H); ¹³C NMR δ 200.5, 137.2, 135.8, 134.2, 133.1, 129.8, 128.7, 128.2, 127.8, 63.7, 38.5, 32.2, 27.1, 20.9, 19.4; Anal. Calcd for C₂₇H₃₂O₂Si: C, 77.84, H, 7.74. Found: C, 77.57; H, 7.82.

- 3. NaBH₄ (29 mg, 0.75 mmol) was added at room temperature to a solution of **2** (0.208 g, 0.5 mmol) in methanol (2.5 mL) and the resulting reaction mixture was stirred for 30 min before saturated NH₄Cl solution (10 mL) was added. The resulting mixture was extracted with EtOAc (3 x 15 mL) and the combined extracts were washed with water (10 mL) and brine (10 mL), then dried (Na₂SO₄) and concentrated to dryness. Column chromatography on silica gel (Hexane/EtOAc 5:1) gave **3** (0.195 g, 94%) as a colorless oil. ¹H NMR δ 7.72 (m, 4 H), 7.49-7.31 (m, 11 H), 4.66 (t, J = 6.7 Hz, 2 H), 3.70 (t, J = 6.2 Hz, 2 H), 2.03 (br. s, 1 H), 1.79 (m, 2 H), 1.64 (m, 2 H), 1.44 (m, 2 H), 1.10 (s, 9 H); ¹³C NMR δ 145.0, 135.7, 134.2, 129.7, 128.6, 127.8, 127.6, 126.1, 74.7, 63.9, 38.9, 32.5, 27.0, 22.2, 19.4; Anal. Calcd for C₂₇H₃₄O₂Si.1/4H₂O: C, 76.64; H, 8.22. Found: C, 76.75; H, 8.25.
- **4.** PPTs (0.11 g, 40 mol%, 0.44 mmol) was added at room temperature to a solution of **3** (0.459 g, 1.10 mmol) and dihydropyran (0.20 mL, 2.20 mmol) in CH₂Cl₂ (10 mL). The resulting reaction mixture was stirred at room temperature overnight before it was diluted with EtOAc (50 mL). The organic layer was washed subsequently with saturated NaHCO₃ solution (10 mL), water (10 mL) and brine (10 ml), then dried (Na₂SO₄) and concentrated to dryness. Column chromatography on silica gel (Hexane/EtOAc 5/1) gave **4** (0.528 g, 96%) as a colorless oil. ¹H NMR δ 7.70 (m, 4 H), 7.46-7.30 (m, 11 H), 4.88 (t, J = 3.3 Hz), 4.47 (t, J = 3.4 Hz) (1 H), 4.73 (dd, J = 7.8, 5.4 Hz), 4.61 (t, J = 6.4 Hz) (1 H), 4.00 (m), 3.58 (m), 3.34 (m) (2 H), 3.70 (t, J = 6.1 Hz), 3.68 (t, J = 6.4 Hz) (2 H), 1.90 (m, 2 H), 1.76 (m, 2 H), 1.67-1.44 (m, 8 H), 1.16 (s, 9 H); ¹³C NMR δ 143.8, 142.8, 135.7, 134.2, 129.7, 128.5, 128.2, 127.8, 127.1 (d), 126.6, 98.2, 95.2, 79.1, 77.2, 64.0,

63.9, 62.4, 62.0, 38.3, 37.2, 32.7, 30.9, 27.0, 25.8, 25.6, 22.7, 22.0, 19.6, 19.4; Anal. Calcd for C₃₂H₄₂O₃Si: C, 76.45; H, 8.42. Found: C, 76.77; H, 8.59.

5. TBAF (2.024 mL, 2.024 mmol) was added dropwise at room temperature to a solution of **4** (0.508 g, 1.012 mmol) in THF (12 mL). The resulting reaction mixture was stirred at room temperature for 2 h before it was diluted with EtOAc (50 mL). The organic layer was washed subsequently with saturated NH₄Cl solution (10 mL), water (10 mL) and brine (10 mL), then dried (Na₂SO₄) and concentrated to dryness. Column chromatography on silica gel (Hexane/EtOAc 1/1) gave **5** (0.261 g, 98%) as a colorless oil. 1 H NMR δ 7.36-7.21 (, 5 H), 4.82 (t, J = 5.2 Hz), 4.38 (t, J = 4.2 Hz), (1 H), 4.67 (dd, J = 7.8, 5.7 Hz), 4.55 (t, J = 6.4 Hz) (1 H), 3.91 (m), 3.48 (m), 3.25 (m) (2 H), 3.56 (t, J = 6.4 Hz), 3.53 (t, J = 6.5 Hz) (2 H), 2.34 (s, 1 H), 1.82 (m, 2 H), 1.71 (m, 2 H), 1.61-1.34 (m, 8 H); 13 C NMR δ 143.5, 142.4, 128.4, 128.1, 127.5, 127.0, 126.9, 126.5, 98.0, 95.6, 79.0, 77.2, 62.6, 62.5, 61.9, 38.0, 36.9, 32.7, 32.6, 30.8, 30.7, 25.5, 25.4, 22.2, 21.7, 19.7, 19.2; Anal. Calcd for C_{16} H₂₄O_{3.}1/4 H₂O: C, 71.48; H, 9.18. Found: C, 71.82; H, 9.14.

6. DEAD (0.275 mL, 1.70 mmol) was added dropwise at room temperature to a solution of **5** (0.25 g, 0.947 mmol), *N*-hydroxyphthalimide (0.218 g, 1.42 mmol) and PPh₃ (0.38 g, 1.42 mmol) in THF (15 mL). The resulting reaction mixture was stirred at room temperature for 24 h before it was diluted with EtOAc (50 mL) and water (10 mL). The water layer was extracted with EtOAc (3 x 15 mL). The combined EtOAc layers were washed subsequently with saturated NaHCO₃ solution (2 x 10 mL), water (10 mL) and brine (10 ml), then dried (Na₂SO₄) and concentrated to dryness. Column chromatography on silica gel (Hexane/EtOAc 1/1) gave **6** (0.388 g, 100%) as a colorless oil. ¹H NMR δ 7.79 (dd, 2 H), 7.70 (dd, 2 H), 7.36 –7.19 (m, 5 H), 4.83 (t, J = 3.3 Hz), 4.37 (t, J = 3.6 Hz) (1 H), 4.68 (dd, J = 7.8, 5.4 Hz), 4.58 (t, J = 6.4 Hz) (1 H), 4.16 (t, J = 6.8 Hz), 4.14 (t, J = 6.8 Hz) (2 H), 3.91 (m), 3.48 (m), 3.26 (m) (2 H), 1.91-1.68 (m, 6 H), 1.58-1.39 (m, 6 H); ¹³C NMR δ 163.6, 143.4, 142.4, 125.0, 134.5, 129.0, 128.4, 128.2, 127.5, 127.0, 126.5, 124.1, 123.5, 98.1, 95.3, 78.7, 78.4 (d), 76.9, 62.4, 62.0, 38.0, 36.7, 30.8, 28.2, 25.6, 25.5, 22.2, 21.5, 19.6, 19.3.

- **7.** PPTs (44.7 mg, 0.18 mmol) was added at room temperature to a solution of **6** (0.368 g, 0.9 mmol) in ethanol (14 mL). The resulting reaction mixture was heated to 55°-60 °C for 4 h before it was cooled to room temperature and the solvent was removed under vacuum. The residue was taken up in EtOAc (75 mL) and washed subsequently with saturated NaHCO₃ solution (10 mL), water (10 mL) and brine (10 mL), then dried (Na₂SO₄) and concentrated to dryness. Column chromatography on silica gel (Hexane/EtOAc 1/1) gave **7** (0.28 g, 96%) as a white solid (mp 66-67 °C). ¹H NMR δ 7.79 (dd, 2 H), 7.71 (dd, 2 H), 7.35-7.21 (m, 5 H), 4.68 (dd, J = 7.5, 5.4 Hz, 1 H), 4.16 (t, J = 6.5 Hz, 2 H), 2.43 (br. s, 1 H), 1.80 (m, 4 H), 1.60-1.47 (m, 2 H); ¹³C NMR δ 163.8, 144.9, 134.6, 129.0, 128.5, 127.5, 126.0, 123.6, 78.4, 74.2, 38.7, 28.0, 22.0; Anal. Calcd for C₁₉H₂₉NO₄: C, 70.14; H, 5.88. Found: 70.78; H, 6.03.
- **8**. 4-(1-Pyrrolidinyl)pyridine (0.16 g, 1.07 mmol) was added at room temperature to a solution of **7** (0.692 g, 2.13 mmol) and Ac₂O (0.613 mL, 8.52 mmol) in NEt₃ (15.0 mL). The resulting reaction mixture was stirred at room temperature overnight before it was diluted with EtOAc (100 mL) and saturated NH₄Cl solution (20 mL). The organic layer was washed with 2N HCl to pH to 6-7, then washed subsequently with water (15 mL), saturated NaHCO₃ solution (10 mL), water (10 mL) and brine (10 mL), then dried (Na₂SO₄) and concentrated to dryness. Column chromatography on silica gel (Hexane/EtOAc 1/1) gave **8** (0.704 g, 90%) as a white solid (mp 92-94 °C). ¹H NMR δ 7.83 (dd, 2 H), 7.73 (dd, 2 H), 7.34-7.26 (m, 5 H), 5.75 (dd, J = 7.6, 6.1 Hz, 1 H), 4.17 (t, J = 6.6 Hz, 2 H), 2.08 (s, 3 H), 2.00 (m, 1 H), 1.90-1.76 (m, 3 H), 1.54 (m, 2 H); ¹³C NMR δ 170.6, 163.8, 140.7, 134.6, 129.1, 128.6, 128.1, 126.7, 123.7, 78.3, 76.0, 36.1, 28.0, 21.8, 21.5; Anal. Calcd for C₂₁H₂₁NO₅: C, 68.65; H, 5.76. Found: C, 68.75; H, 5.80.
- 9. Diethyl chlorophosphate (0.112 g, 0.651 mmol) in CH_2Cl_2 (1.0 mL) was added at room temperature to a solution of **7** (0.141 g, 0.434 mmol) and DMAP (0.08 g, 0.651 mmol) in CH_2Cl_2 (8.0 mL). The resulting reaction mixture was stirred at room temperature for 24 h before it was diluted with EtOAc (50 mL). The organic layer was washed subsequently with saturated NH_4Cl solution (10 mL), water (10 mL) and brine (10 ml), then dried (Na_2SO_4) and concentrated to dryness. Column chromatography on silica gel

(Hexane/EtOAc 1/1) gave **9** (0.104 g, 52%, 100% based on recovered **7**) as a colorless oil. 1 H NMR δ 7.80 (dd, 2 H), 7.73 (dd, 2 H), 7.37-7.26 (m, 5 H), 5.27 (dd, J = 13.7, 7.3 Hz, 1 H), 4.14 (t, J = 6.6 Hz, 2 H), 4.08 (m, 1 H), 3.96 (m, 1 H), 3.85 (m, 2 H), 2.03 (m, 1 H), 1.89 (m, 1 H), 1.79 (m, 2 H), 1.62 (m, 1 H), 1.47 (m, 1 H), 1.22 (dt, J = 7.1, 0.8 Hz, 3 H), 1.11 (dt, J = 7.1, 0.8 Hz, 3 H); 13 C NMR δ 163.7, 140.6, 134.6, 132.3, 132.2, 129.1, 128.6, 128.4, 126.6, 123.6, 80.5 (d), 78.3, 63.7 (t), 37.7 (d), 27.9, 21.6, 16.1 (t); 31 P NMR δ -1.08; Anal. Calcd for $C_{23}H_{28}NO_7P.1/4H_2O$: C, 59.29; H, 6.16. Found: C, 59.02; H, 6.08.

10. Same procedure as for **9** with replacement of diethyl chlorophosphate by diphenyl chlorophosphate. 63%. ¹H NMR δ 7.81 (dd, 2 H), 7.72 (dd, 2 H), 7.33-7.06 (m, 13 H), 6.97 (dd, 2 H), 5.54 (dd, J = 13.5, 7.3 Hz, 1 H), 4.09 (t, J = 6.6 Hz, 2 H), 2.08 (m, 1 H), 1.95 (m, 1 H), 1.74 (m, 2 H), 1.47 (m, 2 H); ¹³C NMR δ 163.7, 150.7 (t), 139.6, 134.6, 129.8, 129.7, 129.1, 128.6, 126.7, 125.4, 125.2, 123.6, 120.4, 120.3, 120.2, 120.1, 82.6 (d), 78.1, 37.4 (d), 27.8, 21.4; ³¹P NMR δ -11.89; Anal. Calcd for C₃₁H₂₈NO₇P: C, 66.78; H, 5.06. Found: C, 66.64; H, 5.08.

11. MeMgBr (0.424 mL, 3.0 M in Et₂O, 1.27 mmol) was added dropwise at 0 °C to a solution of **2** (0.352 g, 0.847 mmol) in THF (6.0 mL). The reaction mixture was stirred at this temperature for 30 min before EtOAc (50 mL) and HCl (0.5 N, 10 mL) was added to quench the reaction. The water layer was extracted with EtOAc (3 x 10 mL) and the combined extracts were washed subsequently with saturated NaHCO₃ solution (10 mL),

water (10 mL) and brine (10 ml), then dried (Na₂SO₄) and concentrated to dryness. Column chromatography on silica gel (Hexane/EtOAc 5/1) gave **11** (0.25 g, 71%) as a colorless oil. ¹H NMR δ 7.64 (dd, 4 H), 7.45-7.24 (m, 4 H), 3.62 (t, J = 6.4 Hz, 2 H), 1.79 (M, 2 H), 1.68 (br. s, 1 H), 1.55 (s, 3 H), 1.32 (m, 2 H), 1.28 (m, 2 H), 1.03 (s, 9 H); ¹³C NMR δ 148.1, 135.8, 134.2, 129.7, 128.3, 127.8, 126.7, 125.0, 74.9, 63.9, 44.0, 32.9, 30.3, 27.0, 20.5, 19.4; Anal. Calcd for C₂₈H₃₆O₂Si: C, 77.73; H, 8.39. Found: C, 77.25; H, 8.45.

- **12**. Same procedure as for **8**. 97%. ¹H NMR δ 7.66 (dd, 4 H), 7.44-7.26 (m, 11 H), 3.64 (t, J = 6.2 Hz, 2 H), 2.07 (s, 3 H), 2.00 (m, 2 H), 1.85 (s, 3 H), 1.52 (m, 2 H), 1.30 (m, 2 H), 1.05 (s, 9 H); ¹³C NMR δ 169.8, 145.2, 135.8, 134.2, 129.7, 128.3, 127.8, 127.0, 124.7, 84.2, 63.7, 42.5, 32.8, 27.0, 25.0, 22.4, 20.3, 19.4; Anal. Calcd for C₃₀H₃₈O₃Si: C, 75.90; H, 8.07. Found: C, 75.74; H, 8.16.
- **13**. Same procedure as for **5**. 86%. ¹H NMR δ 7.34-7.20 (m, 5 H), 3.53 (dt, J = 6.5, 1.4 Hz, 2 H), 2.05 (s, 3 H), 2.03 (m, 2 H), 1.82 (s, 3 H), 1.47 (m, 2 H), 1.26 (m, 2 H); ¹³C NMR δ 169.9, 145.0, 128.3, 127.0, 124.6, 84.1, 62.6, 42.3, 32.8, 25.0, 22.4, 20.1; Anal. Calcd for C₁₄H₂₀O₃.1/4H₂O: C, 69.83; H, 8.58. Found: C, 69.97; H, 8.49.
- **14**. Same procedure as for **6**. 52% White solid (mp 119-121 °C). ¹H NMR δ 7.82 (dd, 2 H), 7.74 (dd, 2 H), 7.32-7.19 (m, 5 H), 4.14 (t, J = 6.6 Hz, 2 H), 2.07 (s, 3 H), 2.04 (m, 2 H), 1.85 (s, 3 H), 1.74 (m, 2 H), 1.41 (m, 2 H); ¹³C NMR δ 169.9, 163.8, 145.1, 134.6, 129.1, 128.4, 127.0, 124.7, 123.7, 84.0, 78.4, 42.3, 28.4, 25.0, 22.5, 20.1; Anal. Calcd for $C_{22}H_{23}NO_5.1/4H_2O$: C, 68.47; H, 6.14. Found: C, 68.68; H, 6.10.

16 and 17. were prepared according to the literature methods.^{2,3}

- **18**. Same procedure as for **2**. 100%. ¹H NMR δ 7.70-7.64 (m, 4 H), 7.43-7.26 (m, 11 H), 4.51 (d, J = 5.9 Hz), 4.44 (d, J = 6.8 Hz) (1 H), 3.68 (t, J = 6.4 Hz), 3.62 (t, J = 6.4 Hz), (2 H), 1.90-1.40 (m, 5 H), 1.06 (s), 1.03 (s) (9 H), 0.93 (d, J = 6.7 Hz), 0.76 (d, J = 6.8 Hz) (3 H); ¹³N MR δ 143.9, 143.6, 135.8, 135.0, 134.3, 129.8, 126.6, 79.1, 78.4, 64.4, 64.2, 40.2, 40.1, 30.4, 30.2, 29.4, 28.6, 27.1, 26.8, 19.4, 15.8, 14.7; Anal. Calcd for $C_{28}H_{36}O_2Si$: C, 77.73; H, 8.39. Found: C, 77.84; H, 8.34.
- **19**. Same procedure as for **4**. 60%. ¹H NMR δ 7.70-7.62 (m, 4 H), 7.41-7.23 (m, 11 H), 4.78 (br s), 4.40 (m) (1 H), 4.47 (d, J = 6.8 Hz), 4.42 (d, J = 7.4 Hz), 4.32 (d, J = 6.3 Hz), 4.26 (d, J = 7.1 Hz) (1 H), 3.94 (m), 3.46 (m), 3.21 (m) (2 H), 3.69 (t, J = 6.5 Hz), 3.66 (t, J = 6.2 Hz), 3.58 (t, J = 6.4 Hz) (2 H), 2.02-1.37 (m, 5 H), 1.06 (s), 1.03 (s), 1.02 (s) (9 H), 0.92 (d, J = 6.7 Hz), 0.72 (d, J = 6.6 Hz), 0.70 (d, J = 6.7 Hz) (3 H); ¹³C NMR δ

- 142.7, 142.5, 141.6, 141.5, 141.3, 135.8, 134.3, 129.7, 128.2, 127.9, 127.8, 127.5, 127.0, 126.9 (d), 99.5, 99.2, 95.1, 84.3, 84.0, 81.7, 81.3, 64.6, 64.3, 62.2, 62.1, 62.0, 39.8, 39.5, 39.2, 31.0, 30.7, 30.4, 30.3, 29.4 (d), 29.1, 27.1, 25.8, 25.7, 19.5, 19.4, 16.0, 15.8, 15.6, 15.4; Anal. Calcd for C₃₃H₄₄O₃Si: C, 76.70; H, 8.58. Found: C, 76.53; H, 8.65.
- **20**. Same procedure as for **5**. 95%. ¹H NMR δ 7.34-7.22 (m, 5 H), 4.78(t, J = 3.3 Hz), 4.37 (t, J = 3.3 Hz), 4.33 (t, J =- 3.6 Hz) (1 H), 4.50 (d, J = 6.5 Hz), 4.42 (d, J = 7.6 Hz), 4.32 (d, J = 6.4 Hz), 4.26 (d, J = 7.1 Hz) (1 H), 3.92 (m), 3.42 (m), 3.18 (m) (2 H), 3.62 (m), 3.53 (m) (2 H), 1.94-1.41 (m, 5 H), 1.01 (d, J = 6.7 Hz), 0.94 (d, J = 6.7 Hz), 0.72 (d, J = 6.8 Hz) (3 H); ¹³C NMR δ 142.6, 142.3, 141.1, 128.2, 128.0, 127.8, 127.6, 127.5, 127.3, 127.0, 99.5, 99.3, 95.7, 95.6, 84.3, 83.9, 81.8, 81.1, 63.3, 63.2, 62.9, 62.6, 62.1 (d), 39.7, 39.3, 39.2, 31.0, 30.7, 30.6 (d), 30.5, 30.3, 29.1, 28.8, 28.7, 25.7, 25.6, 19.9, 19.7, 19.3, 16.2, 15.8, 15.7, 15.5; Anal. Calcd for C₁₇H₂₆O₃: C, 73.34; H, 9.41. Found: C, 73.07; H, 9.56.
- **21**. Same procedure as for **6**. 77%. ¹H NMR δ 7.85-7.80 (m, 2 H), 7.75-7.72 (m, 2 H), 7.31-7.21 (m, 5 H), 4.79 (t, J = 3.2 Hz), 4.37 (m) (1 H), 4.50 (d, J = 6.5 Hz), 4.42 (d, J = 7.6 Hz), 4.36 (d, J = 6.4 Hz), 4.26 (d, J = 7.0 Hz) (1 H), 4.19 (m), 4.10 (m) (2 H), 3.93 (m), 3.46 (m), 3.21 (m) (2 H), 2.00-1.10 (m, 5 H), 1.03 (d, J = 6.7 Hz), 0.95 (d, J = 6.7 Hz), 0.75 (d, J = 6.8 Hz) (3 H); ¹³C NMR δ 163.8, 142.2, 142.3, 141.2, 141.1, 134.6, 129.1, 128.2, 128.0 (d), 127.8, 127.6, 127.4, 127.3, 127.0 (d), 123.6, 99.5, 99.4, 95.2 (d), 84.3, 83.8, 81.5, 81.0, 79.1, 79.0, 78.9, 78.8, 62.4, 62.2, 62.0, 39.7, 39.5, 39.3, 30.9, 30.7, 29.0, 28.8, 28.6, 28.5, 26.1, 26.0, 25.8, 25.6, 19.5, 19.3, 16.1, 15.6, 15.3; Anal. Calcd for C₂₅H₂₉NO₅: C, 70.90; H, 6.90. Found: C, 70.38; H, 6.92.
- **22**. Same procedure as for **7**. 83%. ¹H NMR δ 7.83-7.80 (m, 2 H), 7.75-7.72 (m, 2 H), 7.32-7.24 (m, 5 H), 4.61 (d, J = 5.3 Hz), 4.42 (d, J = 7..2 Hz) (1 H), 4.20 (m), 4.15 (t, J = 6.6 Hz) (2 H), 2.20 (br. s, 1 H), 1.87 (m, 2 H), 1.80-1.58 (m), 1.46-1.22 (m) (3 H), 0.93 (d, J = 6.7 Hz), 0.76 (d, J = 6.8 Hz) (3 H); ¹³C NMR δ 163.9, 143.6, 134.6, 129.1, 128.4, 128.3, 127.6, 127.4, 126.9, 126.5, 123.7, 79.0 (d), 78.8, 40.0 (d), 29.1, 28.4, 26.1, 25.7,

- 16.0, 14.4; Anal. Calcd for $C_{20}H_{21}NO_4$.1/4 H_2O : C: 68.95; H, 6.22. Found: C, 68.63; H, 6.05.
- **23**. Same procedure as for **8**. 100%. ¹H NMR δ 7.82 (m, 2 H), 7.73 (m, 2 H), 7.31-7.23 (m, 5 H), 5.64 (d, J = 6.3 Hz), 5.53 (d, J = 7.7 Hz) (1 H), 4.18 (t, J = 6.4 Hz), 4.11 (t, J = 6.6 Hz) (2 H), 2.09 (s), 2.07 (s) (3 H), 2.04 (m), 1.95-1.66 (m), 1.59-1.18 (m) (5 H), 0.95 (d, J = 6.7 Hz), 0.80 (d, J = 6.8 Hz) (3 H); ¹³C NMR δ 170.5, 163.8, 139.6, 134.6, 129.1, 128.4, 127.9, 127.8, 127.2, 126.9, 123.6, 80.0, 79.3, 78.7, 78.6, 38.4, 38.2, 28.8, 28.4, 25.9, 21.3, 15.7, 15.0; Anal. Calcd for C₂₂H₂₃NO₅: C, 69.28; H, 6.08. Found: C, 69.13; H, 6.04.
- **24**. Same procedure as for **9**. 60%. ¹H NMR δ 7.81 (m, 2 H), 7.72 (m, 2 H), 7.32-7.22 (m, 5 H), 5.12 (dd, J = 8.0, 6.2 Hz), 5.03 (t, J = 7.6 Hz) (1 H), 4.18 (t, J = 6.5 Hz), 4.11 (t, J = 6.6 Hz) (2 H), 4.09 (m, 1 H), 3.93 (m, 1 H), 3.80 (m, 2 H), 2.10-1.65 (m), 1.52 (m), 1.34 (m) (5 H), 1.20 (dt, J = 7.0, 0.8 Hz), 1.09 (dt, J = 6.9, 0.9 Hz) (3 H), 1.00 (d, J = 6.7 Hz), 0.79 (d, J = 6.8 Hz) (3 H); ¹³C NMR δ 163.7, 139.6, 139.4, 134.6, 129.1, 128.3, 128.1, 127.3, 127.1, 123.6, 84.6 (d), 84.3 (d), 78.8, 78.6, 63.7 (t), 39.8 9d), 39.6 (d), 28.5, 28.2, 25.9, 25.7, 16.1 9d), 15.3, 14.9; ³¹P NMR δ -0.86, -1.02.
- **25**. Same procedure as for **10**. 77%. ¹H NMR δ 7.82-7.79 (m, 2 H), 7.74-7.71 (m, 2 H), 7.32-7.07 (m, 13 H), 6.93 (m, 2 H), 5.40 (dd, J = 7.8, 6.2 Hz), 5.28 (t, J = 7.5 Hz) (1 H), 4.05 (m, 2 H), 2.06 (m, 1 H), 1.88-1.63 (m, 2 H), 1.48 (m), 1.26 (m) (2 H), 0.96 (d, J = 6.7 Hz), 0.77 (d, J = 6.8 Hz) (3 H); ¹³C NMR δ 163.8, 150.8, 150.7, 150.6, 138.5, 138.3, 134.6, 129.8, 129.7, 129.0 (d), 128.5, 128.4, 127.4, 127.1, 125.3, 125.2, 123.6, 120.4, 120.3, 120.2, 120.1, 86.7, 86.6, 86.3, 86.2, 78.6, 78.5, 39.8, 39.7, 39.5, 39.4, 28.3, 28.1, 25.8, 25.6, 15.2, 14.8; ³¹P NMR δ -11.65, -11.83; Anal. Calcd for C₃₂H₃₀NO₇P.1/4H₂O: C, 66.72; H, 5.34. Found: C, 66.71; H, 5.33.

- 32 and 33 were prepared according to the literature method.⁴
- **34**. Same procedure as **2**. 41%. ¹H NMR δ 7.66 (dd, 4 H), 7.44-7.26 (m, 11 H), 5.18 (dd, J = 8.0, 4.3 Hz, 1 H), 3.96 (t, J = 6.1 Hz, 2 H), 2.92 (dd, J = 23.2, 17.7 Hz, 1 H), 2.90 (d, J = 1.6 Hz, 1 H), 2.65 (t, J = 6.1 Hz, 2 H), 1.05 (s, 9 H); ¹³C NMR δ 210.6, 142.9, 135.7, 133.4, 130.0, 128.7, 127.9, 127.8, 125.8, 70.0, 59.7, 46.3, 27.0; Anal. Calcd for $C_{27}H_{32}O_3Si$: C, 74.96; H, 7.46. Found: C, 74.49; H, 7.44.
- **35**. Same procedure as for **2**. 42%. ¹H NMR δ 7.66 (m, 4 H), 7.45-7.25 (m, 11 H), 5.20 (m, 1 H), 3.84 (t, J = 10.0 Hz, 1 H), 3.71 (dd, J = 10.0, 5.2 Hz, 1 H), 2.96 (m, 2 H), 2.82 (m, 1 H), 1.07 (s), 1.06 (s), (9 H), 1.03 (d, J = 3.0 Hz, 3 H); ¹³C NMR δ 214.5, 214.4, 143.0, 135.7, 133.2, 130.0, 128.6, 128.0, 127.7, 125.9, 125.8, 70.0 (d), 66.3, 66.1, 51.4, 50.9, 49.4, 49.2, 27.0; Anal. Calcd for C₂₈H₃₄O₃Si: C, 75.29; H, 7.67. Found: C, 75.16; H, 7.69.
- **36**. Same procedure as for **4**. 95%. ¹H NMR δ 7.68 (m, 4 H), 7.44-7.26 (m, 11 H), 5.27 (dd, J = 8.8, 4.6 Hz), 5.11 (dd, J = 8.8, 4.1 Hz) (1 H), 4.91 (t, J = 3.2 Hz), 4.43 (t, J = 3.3 Hz) (1 H), 3.97 (d, J = 6.4 Hz), 3.94 (t, J = 6.4 Hz) (2 H), 3.88 (m), 3.48 (m), 3.24 (dt, J = 11.3, 5.0 Hz) (2 H), 3.13 (ddd, J = 16.5, 8.8, 4.2 Hz, 1 H), 3.73 (m, 2 H), 2.64 (m, 1 H), 1.82-1.37 (m, 6 H), 1.04 (s, 9 H); ¹³C NMR δ 207.5, 207.3, 143.0, 141.2, 135.7, 133.6, 129.9, 128.7, 128.5, 128.0, 127.9, 127.5, 126.5, 99.4, 75.7, 73.1, 62.2, 62.1, 59.6, 51.9, 51.7, 46.9, 46.7, 30.7, 30.6, 27.0, 25.6, 25.5, 19.4, 19.3; Anal. Calcd for C₃₂H₄₀O₄Si: C, 74.38; H, 7.80. Found: C, 74.31; H, 7.76.
- **37**. Same procedure as for **4**. 93%. ¹H NMR δ 7.65 (m, 4 H), 7.43-7.26 (m, 11 H), 5.29 (m), 5.15 (dd, J = 8.9, 4.1 Hz), 5.13 (dd, J = 8.5, 4.4 Hz) (1 H), 4.94 (dd, J = 7.5, 3.5 Hz), 4.44 (dd, J = 7.2, 3.5 Hz) (1 H), 3.89 (m), 3.21 (m) (3 H), 3.68 (m, 1 H), 3.50 (m, 1 H), 2.76 (m, 2 H), 1.83-1.36 (m, 6 H), 1.10-1.00 (m, 12 H); ¹³C NMR δ 211.0, 210.5, 143.3, 143.2, 141.4 (d), 135.7, 133.4, 129.9, 128.6, 128.4, 127.9, 127.4, 127.2, 126.5, 126.4, 99.7, 99.5, 94.5, 77.6, 77.2, 76.8, 75.8, 75.6, 72.9, 72.7, 65.9, 62.2, 62.1, 61.8, 51.2, 50.8,

50.6, 50.4, 49.8, 49.5, 49.4, 30.7, 30.6, 26.9, 25.6, 25.5, 19.3, 19.1, 12.8; Anal. Calcd for C₃₃H₄₂O₄Si: C, 74.68; H, 7.98. Found: C, 74.72; H, 8.03.

- **38**. Same procedure as for **11**. 2 Isomers 92%. Anal. Calcd for $C_{33}H_{44}O_4Si$: C, 74.39; H, 8.32. Found: C, 74.53; H, 8.50. Isomer 1 1H NMR δ 7.77-7.68 (m, 4 H), 7.45-7.28 (m, 11 H), 5.20 (dd, J = 10.9, 2.5 Hz), 5.14 (dd, J = 10.7, 2.4 Hz) (1 H), 4.42 (t, J = 2.6 Hz), 4.38 (t, J = 8.7 Hz) (2 H), 4.04 (m, 1 H), 3.94 (m, 2 H), 3.52 (m, 1 H), 2.16 (m, 2 H), 1.88 (m, 2 H), 1.78 (m, 2 H), 1.67 (m, 1H), 1.53 (m, 3 H), 1.45 (s), 1.31 (s) (3 H), 1.11 (s), 1.05 (s) (9 H); 13 C NMR δ 142.3, 142.2, 135.6, 133.8, 133.7, 129.8, 129.7, 128.6, 127.8, 127.7, 126.8, 96.4, 96.2, 94.7, 75.6, 75.4, 72.0, 71.9, 63.8, 63.7, 63.0, 61.4, 60.7, 49.2, 49.0, 45.3, 42.9, 30.9, 28.3, 27.0, 26.9, 26.8, 25.6, 25.4, 20.3, 20.2, 19.8, 19.2. Isomer 2 1 H NMR δ 7.74 (m, 4 H), 7.48-7.28 (m, 11 H), 4.94-4.82 (m, 2 H), 4.15 (m, 1 H), 3.94 (m, 2 H), 3.52 (m, 1 H), 3.21 (m, 1 H), 2.22 (m 1 H), 1.99-1.63 (m, 5 H), 1.51 (m, 4 H), 1.35 (s), 1.30 (s) (3 H), 1.12 (s), 1.08 (s) (9 H); 13 C NMR δ 144.2, 144.0, 135.6, 133.4, 133.2, 129.9, 129.8, 128.2, 127.8(d), 27.3, 127.2, 126.6, 99.4 (d), 79.0, 78.8, 71.9, 62.2, 61.4, 60.9, 49.4, 44.4, 43.0, 30.8, 28.0, 27.3, 26.9, 25.3, 19.3, 19.1.
- **39.** Same procedure as for **5**. 89%. ¹H NMR δ 7.28 (m, 5 H), 5.21 (dd, J = 11.0, 2.2 Hz), 5.18 (dd, J = 7.8, 2.2 Hz) (1 H), 4.58 (s), 4.46 (s) (1 H), 4.34 (m), 3.98(m) (1 H), 3.83 (m, 1 H), 3.82 (br. s), 3.70 (br.s) (1 H), 3.47 (m, 1 H), 2.24 (dd, J = 14.8, 11.5 Hz), 2.07 (dd, J = 14.8, 11.2 Hz) (1 H), 1.75-1.46 (m, 9 H), 1.46 (s), 1.30 (s) (3 H); ¹³C NMR δ 141.8, 141.6, 128.7, 128.0, 127.9, 126.7, 96.9, 96.7, 76.0, 75.5, 74.2, 73.6, 64.2, 59.9, 59.5, 49.8, 48.5, 44.1, 41.2, 31.0, 29.8, 27.9, 26.3, 25.2, 20.4.
- **40**. 1,1'-Thiocarbonyl diimidazole (0.10 g, 0.562 mmol) and DMAP (0.137 g, 1.12 mmol) were added successively to a solution of **39** (0.11 g, 0.374 mmol) in dry CH₃CN (10 mL) at 0°C. The resulting reaction mixture was then heated to reflux for 5 h before it was cooled down and diluted with EtOAc (50 mL) and saturated NH₄Cl solution (10 ml). The water layer was extracted with EtOAc (3 x 10 mL). The combined extracts were washed subsequently with HCl soluton (0.5 N, 15 mL), water (10 mL), saturated NaHCO₃ solution (10 mL), water (10 mL) and brine (10 mL), then dried (Na₂SO₄) and

concentrated to dryness. Column chromatography on silica gel (Hexane/EtOAc 1/1) gave **40** (0.0812 g, 65%) as a colorless oil. 1 H NMR δ 7.36-7.26 (m, 5 H), 4.93 (dd, J = 9.4, 3.2 Hz, 1 H), 4.47 (m, 2 H), 4.21 (m, 1 H), 3.88 (m, 1 H), 2.62 (m, 1 H), 2.35 (m), 2.08(m) (3 H), 1.86-1.36 (m, 6 H), 1.68 (s), 1.59 (s) (3 H); 13 C NMR δ 190.8, 141.5, 128.9, 128.2, 126.8, 126.6, 97.5, 97.1, 86.3, 74.0, 73.2, 66.9, 66.4, 65.1, 64.6, 48.6, 47.7, 31.8, 31.4, 31.2, 30.0, 27.0, 25.4, 21.3, 20.9.

- **41.** n-Bu₃SnH (0.205 mL, 0.765 mmol) and AIBN (0.128 mmol) in degassed PhH (2.0 mL) were added to a refluxing solution of **40** (0.0856 g, 0.255 mmol) in PhH (8.0 mL) over 15 min. The resulting reaction mixture was heated to reflux for a further 3 h before it was cooled to room temperature and a solution of CH₃ONa in CH₃OH (2.0 mL, 1.0 M) and THF (2.0 mL) were added. The mixture was stirred overnight before it was diluted with saturated NH₄Cl solution (15 mL) and EtOAc (50 mL). The water layer was extracted with EtOAc (3 x 10 mL) and the combined extracts were washed subsequently with water (10 mL), and brine (10 ml), then dried (Na₂SO₄) and concentrated to dryness. Column chromatography on silica gel (Hexane/EtOAc gradient eluent 9/1 to 1/1) gave **41** (0.050 g, 71%) as a colorless oil. ¹H NMR δ 7.37-7.21 (m, 5 H), 4.81 (m, 1 H), 4.37 (dd, J = 4.5, 2.8 Hz), 4.33 (dd, J = 5.4, 2.7 Hz) (1 H), 3.93 (m, 1 H), 3.70 (m, 2 H), 3.46 (m, 1 H), 2.00-1.25 (m, 10 H), 1.02-0.90 (m, 3 H).
- **42**. Same procedure as for **6**. 43%. ¹H NMR δ 7.84 (m, 2 H), 7.74 (m, 2 H), 7.38-7.19 (m, 5 H), 4.81 (m, 1 H), 4.63 (m), 4.40 (m) (1 H), 4.22 (m, 2 H), 3.94 (m), 3.23 (m) (1 H), 3.49 (m, 1 H), 1.95-1.33 (m, 10 H), 1.07-0.98 (m, 3 H); ¹³C NMR δ 163.8, 144.2, 143.5, 142.3, 135.1, 134.6, 129.2, 128.6, 128.3, 127.7, 127.6, 127.3, 127.2, 127.0, 126.9, 126.6, 124.3, 123.7, 99.1, 98.5, 95.5, 95.4, 77.9, 77.8, 77.1, 77.0, 75.4, 75.0, 62.7, 62.5, 62.2, 62.1, 46.3, 45.8, 45.4, 44.6, 35.6, 35.5, 35.2, 34.8, 30.9, 30.8, 29.9, 26.9, 26.8, 25.7, 25.6, 20.2, 20.1, 19.8, 19.6, 19.4; Anal. Calcd for C₂₅H₂₉NO₅: C, 70.90; H, 6.90. Found: C, 71.00; H, 6.86.
- **43**. Same procedure as for **7**. 85%. ¹H NMR δ 7.84 (m, 2 H), 7.75 (m, 2 H), 7.38-7.25 (m, 5 H), 4.82 (m, 1 H), 4.26 (m, 2 H), 2.27 (br. s 1 H), 2.17-1.85 (m, 2 H), 1.83-1.45 (m, 3

- H), 1.08 (d, J = 6.6 Hz), 1.03 (d, J = 6.5 Hz) (3 H); ¹³C NMR δ 163.9, 145.7, 145.0, 134.6, 129.0, 128.6 (d), 127.6, 127.5, 126.0, 125.8, 123.7, 77.0, 76.9, 72.3, 46.8, 46.7, 35.6, 34.7, 29.9, 26.8, 26.7, 20.4, 19.8; Anal. Calcd for $C_{20}H_{21}NO_4$: C, 70.78; H, 6.24. Found: C, 70.82; H, 6.42.
- **44**. Same procedure as for **10**. 91%. ¹H NMR δ 7.82 (m, 2 H), 7.74 (m, 2 H), 7.36-7.15 (m, 13 H), 5.60 (m, 1 H), 4.14 (m, 2 H), 2.17 (m), 1.95 (m), 1.81 (m) (3 H), 1.65 (m, 2 H), 0.98 (d, J = 5.4 Hz, 3 H); ¹³C NMR δ 163.7, 150.7 (t), 140.2, 139.3, 134.6, 129.8, 129.7, 129.1 (d), 128.7 (d), 127.1, 126.8, 125.3, 125.1, 123.6, 120.3, 120.2, 120.1, 81.5, 81.4, 80.9, 80.8, 76.8, 76.6, 45.5, 45.4, 44.5, 44.4, 35.3, 34.8, 26.7, 26.5, 19.6, 19.0; ³¹P NMR δ -11.82, -12.00; Anal. Calcd for C₃₂H₃₀NO₇P: C, 67.24; H, 5.29. Found: C, 67.66; H, 5.70.
- **45**. Same procedure as for **3**. 2 Isomers 89%. Anal. Calcd for $C_{33}H_{44}O_4Si.1/4H_2O$: C, 73.77; H, 8.35. Found: C, 73.87; H, 8.35. Isomer 1 1H NMR δ 7.68 (m, 4 H), 7.44-7.29 (m, 11 H), 5.01 (m, 1 H), 4.47 (br. s, 1 H), 4.09-3.90 (m, 2 H), 3.75-3.58 (m, 2 H), 3.54 (m, 1 H), 2.14-1.57 (m, 9 H), 1.07 (s, 9 H), 0.94 (d, J = 6.9 Hz, 3 H); ^{13}C NMR δ 141.8, 135.8, 133.9, 133.8, 129.8, 128.6, 127.9, 127.8, 127.1, 95.3, 77.8, 73.4, 71.7, 66.9, 66.7, 62.5, 42.9, 42.0, 41.1, 30.6, 27.0, 25.5, 19.6, 19.4, 13.1, 11.0. Isomer 2 1H NMR δ 7.68 (m, 4 H), 7.46-7.26 (m, 11 H), 5.18-4.80 (m), 4.46 (m), 4.07 (m), 3.85-3.50 (m), 3.27 (m) (7 H), 2.18-1.43 (m, 9 H), 1.07 (m, 9 H), 0.98-0.84 (m, 3 H).
- **46**. NaH (0.123 g, 60% in paraphin, 3.073 mmol) was added at room temperature to a solution of **45** (0.545 g, 1.024 mmol) in THF (12 mL). The reaction mixture was stirred at room temperature for 1.5 h before CS₂ (0.184 mL, 3.073 mmol) was added. Then CH₃I (0.255 mL, 4.10 mmol) was added over 1 h. The resulting reaction mixture was stirred at room temperature for 20 h. before it was quenched by addition of saturated NH₄Cl solution (10 mL) dropwise and then EtOAc (60 mL). The water layer was extracted with EtOAc (3 x 15 mL) and the combined extracts were washed subsequently with water (15 mL) and brine (15 mL), then dried (Na₂SO₄) and concentrated to dryness. Column chromatography on silica gel (Hexane/EtOAc 5/1) gave **46** (0.588 g, 92%) as a colorless

oil. ${}^{1}H$ NMR δ 7.64 (m, 4 H), 7.42-7.25 (m, 11 H), 5.94 (m), 5.83 (dt, J = 10.1, 3.4 Hz) (1 H), 4.82 (m, 1 H), 4.39 (m, 1 H), 3.94 (m, 1 H), 3.58 (ddd, J = 20.1, 10.0, 6.8 Hz, 1 H), 3.51 (m, 2 H), 2.51 (s), 2.48 (s) (3 H), 2.44 (m), 2.33-2.05 (m) (2 H), 1.88 (m), 1.57 (m), 1.29 (m) (7 H), 1.04 (s), 0.97 (s) (9 H), 0.96-0.86 (m, 3 H); ${}^{13}C$ NMR δ 214.7 (d), 141.3, 141.0, 135.8, 133.8, 133.7, 133.6 (d), 129.7, 128.7, 128.0, 127.8, 127.6, 127.4, 95.3, 95.0, 82.9, 82.0, 74.3, 74.0, 65.5, 65.2, 62.6, 62.3, 38.8, 38.4, 38.0, 37.4, 30.8, 29.9, 27.0, 26.9, 25.7, 19.6, 19.3, 18.8, 11.8.

47. AIBN (32.3 mg, 0.180 mmol) was added to a solution of **46** (0.5605 g, 0.901 mmol) and n-Bu₃SnH (0.363 mL, 1.352 mmol) in PhH (10.0 mL) at room temperature and the resulting reaction mixture was brought to reflux for 2 h. After cooling the solvent was removed under vacuum and the residue was dissolved in methanol (4 mL) and treated with NaBH₄ (51.4 mg, 1.352 mmol) at room temperature. After 5 min the methanol was removed under vacuum and the residue was partitioned between EtOAc (60 mL) and saturated NH₄Cl solution (15 mL). The aqueous layer was extracted with EtOAc (3 x 15 mL) and the combined extracts were washed subsequently with water (15 mL) and brine (15 mL), then dried (Na₂SO₄) and concentrated to dryness. Column chromatography on silica gel (Hexane/EtOAc 100/0 then 10/1) gave 47, a mixture of 2 isomers (0.44 g, 95%) as a colorless oil. Anal. Calcd for C₃₃H₄₄O₃Si.1/4H₂O: C, 76.03; H, 8.60. Found: C, 75.77; H, 8.61. Isomer 1 ¹H NMR δ 7.69 (m, 4 H), 7.44-7.26 (m, 11 H), 4.68 (t, J = 7.2Hz, 1 H), 4.44 (t, J = 3.3 Hz, 1 H), 3.98(m, 1 H), 3.50 (m, 3 H), 2.01-1.35 (m, 9 H), 1.08(s), 1.06 (s) (9 H), 0.95 (d, J = 6.6 Hz), 0.93 (d, J = 5.1 Hz) (3 H); 13 C NMR δ 142.8, 135.8, 134.2, 129.6, 128.5, 127.7, 127.6, 127.2, 95.3, 77.6, 69.0, 62.4, 35.9, 30.9, 29.7, 27.0, 25.8, 19.7, 19.5, 16.9. Isomer 2 1 H NMR δ 7.69 (m, 4 H), 7.44-7.26 (m,11 H), 4.84 (dd, J = 5.7, 2.8 Hz), 4.42 (t, J = 3.6 Hz) (1 H), 4.66 (t, J = 7.0 Hz), 4.54 (dt, J = 6.4, 2.4)Hz) (1 H), 4.33 (t, J = 6.7 Hz), 3.93 (m) (1 H), 3.59-3.42 (m), 3.28 (m) (3 H), 1.95-1.30(m, 9 H), 1.07 (s, 9 H), 1.02-0.90 (m, 3 H).

48. Same procedure as for **5**. 2 Isomers 76%. Anal Calcd for $C_{17}H_{26}O_3$: C, 73.34; H, 9.41. Found: C, 72.84; H, 9.66. Isomer 1 ¹H NMR δ 7.35-7.25 (m, 5 H), 4.66 (m, 1 H), 4.37 (t, J = 3.0 Hz, 1 H), 3.93 (m, 1 H), 3.44 (m, 3 H), 1.95-1.32 (m), 1.09 (m) (9 H), 0.90 (d, J = 3.0 Hz)

6.7 Hz), 0.88 (d, J = 6.5 Hz) (3 H); 13 C NMR δ 142.7, 142.5, 128.5, 127.6, 127.1, 127.0, 96.0, 95.7, 77.8, 77.6, 63.0, 62.8, 35.9, 35.8, 35.7, 31.0, 29.4, 29.3, 25.7, 20.0, 19.9, 16.8. Isomer 2 1 H NMR δ 7.37-7.21 (m, 5 H), 4.82 (t, J = 3.3 Hz), 4.37 (t, J = 3.2 Hz) (1 H), 4.67 (m), 4.56 (m) (1 H), 3.93 (m), 3.55-3.34 (m), 3.26 (dt, J = 11.2, 4.7 Hz) (4 H), 1.95-1.00 (m, 9 H), 0.92-0.86 (m, 3 H); 13 C NMR δ 143.7, 143.6, 142.7, 128.5, 128.3, 127.6, 127.1, 127.0, 126.7, 126.6, 98.3, 98.2, 96.0, 95.7, 79.4, 79.3, 77.8, 68.2, 63.0, 62.9, 62.1, 35.9 (d), 35.8, 35.7, 34.6 (d), 31.0, 30.8, 29.4, 29.3, 28.9, 28.0, 25.7, 25.6, 20.0 (d), 19.4, 17.7, 16.7.

- **49.** Same procedure as for **6**. 83%. ¹H NMR δ 7.82 (m, 2 H), 7.73 (m, 2 h), 7.38-7.24 (m, 5 H), 4.85 (m), 4.39 (t, J = 3.2 Hz) (1 H), 4.67 (m), 4.58 (dt, J = 10.8, 6.1 Hz) (1 H), 4.05 (m, 1 H), 3.93 (m), 3.50 (m), 3.27 (dt, J = 11.1, 4.5 Hz) (3 H), 1.98-1.39 (m, 6 H), 1.09 (d, J = 6.8 Hz), 1.06 (d, J = 7.5 Hz), 1.05 (d, J = 6.7 Hz), 1.04 (d, J = 7.0 Hz) (3 H); ¹³C NMR δ 163.7, 143.6, 143.5, 142.6, 142.5, 134.6, 129.2, 128.5, 128.3, 127.6, 127.1, 126.7, 126.6, 123.6, 98.2, 95.4, 83.6, 83.5, 79.1, 79.0, 62.5, 62.1, 35.7, 35.5, 34.4, 34.2, 32.6, 30.8, 29.7, 29.0, 25.7, 25.6, 19.7, 19.4, 16.9, 16.8; Anal. Calcd for C₂₅H₂₉NO₅: C, 70.90; H, 6.90. Found: C, 71.06; H, 7.10.
- **50**. Same procedure as for **7**. 83%. ¹H NMR δ 7.81 (m, 2 H), 7.73 (m, 2 H), 7.37-7.24 (m, 5 H), 4.69 (br.q), 4.00 (m, 2 H), 2.40 (br s), 2.32 (br s) (1 H), 1.97 (m), 1.88 (m), 1.63 (m), 1.46 (m), 1.25 (m) (5 H), 1.04 (d, J = 6.8 Hz, 3 H); ¹³C NMR δ 163.8, 145.0, 134.6, 129.1, 128.6, 127.6, 126.0 (d), 123.6, 83.4 (d), 74.9, 74.4, 36.4, 36.3, 32.6, 32.3, 29.4, 29.2, 16.8, 16.7; Anal. Calcd for C₂₀H₂₁NO₄: C, 70.78; H, 6.24. Found: C, 71.21; H, 6.65.
- **51**. Same procedure as for **10**. 97%. ¹H NMR δ 7.80 (m, 2 H), 7.72 (m, 2 H), 7.35-7.05 (13 H), 6.97 (d, 2 H), 5.52 (dd, J = 13.1, 5.8 Hz, 1 H), 3.96 (ddd, J = 10.0, 7.7, 1.5 Hz, 1 H), 3.88 (t, J = 7.7 Hz, 1 H), 2.18-1.88 (m, 3 H), 1.61-1.40 (m, 1 H), 1.35-1.12 (m, 1 H), 1.00 (dd, J = 6.7, 2.1 Hz, 3 H); ¹³C NMR δ 163.6, 150.8, 150.7, 150.6, 139.6, 134.6, 129.8, 129.7, 129.1, 128.6, 126.7, 125.4, 125.2, 123.6, 120.4, 120.3, 120.2, 83.2, 35.1 (q), 32.3 (d), 28.8, 28.7, 16.8.

52: $R_1 = R_2 = R_3 = H$ **53**: $R_1 = Me$, $R_2 = R_3 = H$ **54**: $R_1 = R_3 = H$, $R_2 = Me$ **55**: $R_1 = R_2 = H$, $R_3 = Me$

General Procedure for the Hydrogen Abstraction/Cyclisation Sequence:

A solution of Ph₃SnH (1.3 eq) and AIBN (50 mol%) in degassed PhH (0.002 M in Ph₃SnH) or in degassed CH₃CN and PhH (v/v 1/1) (0.002 M in Ph₃SnH) was added with a syringe pump (0.49 mL/h) under Ar to a refluxing solution of the phosphate in degassed PhH (0.001 M in phosphate). Stirring was continued for another 2 h after the addition finished before the solvent was removed under vacuum. In each case inspection the crude reaction mixture was inspected by ¹H NMR spectroscopy before it was subjected to preparative TLC (Hexane/EtOAc 10/1) to afford the product.

52. 95% when ClP(O)(OPh)₂ was used. 60% when ClP(O)(OEt)₂. ¹H NMR δ 7.34-7.22 (m, 5 H), 4.09 (m, 1 H), 3.91 (q, J = 8.0 Hz, 1 H), 3.77 (dt, J = 8.0, 6.5 Hz, 1 H), 2.95(dd, J = 13.6, 6.4 Hz, 1 H), 2.77 (dd, J = 13.6, 6.5 Hz, 1 H), 1.88 (m, 3 H), 1.58 (m, 1 H);¹³C NMR δ 139.1, 129.4, 128.4, 126.3, 80.2, 68.0, 42.1, 31.1, 25.7.

53.⁶ 90% when ClP(O)(OPh)₂ was used. 85% when ClP(O)(OEt)₂. 1 H NMR δ 7.31-7.21 (m, 5 H), 3.85 (m, 1 H), 3.79 (m, 1 H), 2.80 (s, 2 H), 1.97-1.82 (m, 3 H), 1.76 (m), 1.63 (m) (1 H), 1.19 (s, 3 H); 13 C NMR δ 138.6, 130.5, 128.0, 126.2, 82.9, 67.5, 47.0, 36.3, 26.5, 26.1.

54. 90%. ¹H NMR δ 7.27 (m, 5 H), 4.04 (dt, J = 8.1, 5.5 Hz), 3.97 (dt, J = 14.7, 8.0 Hz) (1 H), 3.83 (m), 3.74 (ddd, J = 14.1, 8.5, 5.6 Hz), 3.59 (dt, J = 7.3, 5.0 Hz) (2 H), 2.90-2.70 (m, 2 H), 2.27 (m), 2.08 (m), 1.89 (m), 1.67-1.47 (m) (3 H), 1.03 (d, J = 7.0 Hz),0.97 (d, J = 6.5 Hz), (3 H); ¹³C NMR δ 139.9, 139.3, 129.5, 129.2, 128.5 (d), 126.3,

126.2, 86.5, 82.5, 67.0, 66.4, 40.7, 38.8, 37.1, 35.7, 34.8, 34.1, 17.5, 14.7. Anal. Calcd for C₁₂H₁₆O: C, 81.77; H, 9.15. Found: C, 81.52; H, 9.23.

55. 92%. ¹H NMR δ 7.24 (m, 5 H), 4.21 (m), 4.10 (m) (1 H), 4.02 (dd, J = 8.2, 6.9 Hz), 3.90 (t, J = 7.8 Hz) (1 H), 3.38 (t, J = 8.0 Hz), 3.28 (dd, J = 8.2, 7.0 Hz) (1 H), 3.00 (dd, J = 9.9, 4.8 Hz), 2.94 (dd, J = 10.2, 4.8 Hz) (1 H), 2.80 (dd, J = 10.2, 5.1 Hz), 2.74 (dd, J = 9.9, 4.8 Hz) (1 H), 2.30 (m), 2.08 (m) (1 H), 1.81 (m), 1.54 (m) (1 H), 1.26-1.10 (m, 1 H), 1.03 (d, J = 6.6 Hz), 1.00 (d, J = 6.8 Hz) (3 H); ¹³C NMR δ 139.2, 129.4 (d), 128.5, 126.3, 81.0, 79.7, 75.3, 74.8, 42.5, 40.8, 39.3, 34.5, 33.3, 18.2, 18.0. Anal. Calcd for C₁₂H₁₆O: C, 81.77; H, 9.15. Found: C, 82.04; H, 9.19.

References

- (1) Descotes, G.; Soula, J.-C. Bull. Soc. Chim. Fr. 1964, 2636.
- (2) Bertocchio, R.; Dreux, J. Bull. Soc. Chim. Fr. 1962, 823.
- (3) Bertocchio, R.; Longeray, R.; Dreux, J. Bull. Soc. Chim. Fr. 1964, 60.
- (4) Martin, V. A.; Murray, D. H.; Pratt, N. E.; Zhao, Y.-B.; Albizati, K. F. *J. Am. Chem. Soc.* **1990**, *112*, 6965.
- (5) Senda, Y.; Kanto, H.; Itoh, H. J. Chem. Soc., Perkin Trans. 2 1997, 1143.
- (6) Combret, J.-C.; Larcheveque, M.; Leroux, Y. Bull. Soc. Chim. Fr. 1971, 3501.